A Comparison of Generative and Discriminative Appliance Recognition Models for Load Monitoring
نویسندگان
چکیده
Appliance-level Load Monitoring (ALM) is essential not only to optimize energy utilization but also to promote energy awareness amongst consumers through real-time feedback mechanisms. Non-intrusive load monitoring is an attractive method to perform ALM that allows tracking of appliance states within the aggregated power measurements. It makes use of generative and discriminative machine learning models to perform load identification. However, particularly for low-power appliances, these algorithms achieve sub-optimal performance in a real world environment due to ambiguous overlapping of appliance power features. In our work, we report a performance comparison of generative and discriminative Appliance Recognition (AR) models for binary and multi-state appliance operations. Furthermore, it has been shown through experimental evaluations that a significant performance improvement in AR can be achieved if we make use of acoustic information generated as a by-product of appliance activity. We demonstrate that our a discriminative model FF-AR trained using a hybrid feature set which is a catenation of audio and power features improves the multi-state AR accuracy up to 10 %, in comparison to a generative FHMM-AR model.
منابع مشابه
Hidden Markov Models for ILM Appliance Identification
The automatic recognition of appliances through the monitoring of their electricity consumption finds many applications in smart buildings. In this paper we discuss the use of Hidden Markov Models (HMMs) for appliance recognition using so-called intrusive load monitoring (ILM) devices. Our motivation is found in the observation of electric signatures of appliances that usually show time varying...
متن کاملComparison of Generative and Discriminative Techniques for Object Detection and Classification
Many approaches to object recognition are founded on probability theory, and can be broadly characterized as either generative or discriminative according to whether or not the distribution of the image features is modelled. Generative and discriminative methods have very different characteristics, as well as complementary strengths and weaknesses. In this chapter we introduce new generative an...
متن کاملDeep Discriminative and Generative Models for Pattern Recognition
In this chapter we describe deep generative and discriminative models as they have been applied to speech recognition and related pattern recognition problems. The former models describe the distribution of data or the joint distribution of data and the corresponding targets, whereas the latter models describe the distribution of targets conditioned on data. Both models are characterized as bei...
متن کاملComparison of Generative and Discriminative Approaches for Speaker Recognition with Limited Data
This paper presents a comparison of three different speaker recognition methods deployed in a broadcast news processing system. We focus on how the generative and discriminative nature of these methods affects the speaker recognition framework and we also deal with intersession variability compensation techniques in more detail, which are of great interest in broadcast processing domain. Perfor...
متن کاملVinod Nair A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy
Visual Object Recognition Using Generative Models of Images Vinod Nair Doctor of Philosophy Graduate Department of Computer Science University of Toronto 2010 Visual object recognition is one of the key human capabilities that we would like machines to have. The problem is the following: given an image of an object (e.g. someone’s face), predict its label (e.g. that person’s name) from a set of...
متن کامل